IAAO Annual Conference

Tampa, Florida
August 28-31, 2016

Estimating Depreciation from a Repeat Sales Model

Weiran Huang, PhD
Department of Finance
City of New York

August 29th, 2016

Basics of Depreciation

Depreciation : Decline in asset prices due to the aging of asset (Hulten and Wykoff 1981)

3 Categories:

1. Physical Deterioration
2. Functional Obsolescence
3. Economic Obsolescence

Methods of Estimating Depreciation

- Sales Comparison Method
- Capitalization of Income Method
- Overall Age-Life Method
- Engineering Breakdown Method
- Observed Condition Breakdown Method

Standard Repeat Sales Model

- First Sale

$$
P_{t}=e^{\gamma_{t}} f\left(X_{t} ; \beta_{t}\right)
$$

$\checkmark P_{t}$: purchase price in period t
$\checkmark f\left(X_{t} ; \beta_{t}\right)$: unknown function of period-specific characteristics of the home (X) and their shadow price (β)
$\checkmark e^{\gamma_{t}}$: the influence of period-specific market conditions that are common to all properties in the geographic market

- Second Sale

$$
P_{t+\tau}=e^{\gamma_{t+\tau}} f\left(X_{t+\tau} ; \beta_{t+\tau}\right)
$$

- No physical change between these two sales

$$
\begin{gathered}
P_{t+\tau}=e^{\gamma_{t+\tau}-\gamma_{t} P_{t}} \\
\log \frac{P_{t+\tau}}{P_{t}}=\gamma_{t+\tau}-\gamma_{t}+\varepsilon_{t+\tau}
\end{gathered}
$$

Standard Repeat Sales Model(continued)

- $\log \frac{P_{t+\tau, i}}{P_{t, i}}=\sum_{t=1}^{\tau_{i}} \gamma_{t} D_{t, i}+\varepsilon_{t, i}$ for observation $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- $D_{t, i}$ year dummies in period t, it equals -1 if it sells for the first time 1 if sells for the second time 0 if not sold
- Paird Sale House price Indices

S\&P/Case-Shiller Home Price Indexes
Freddie Mac and OFHEO House Price indexes

Data

- Rolling sales for single - three family homes in five boroughs of New York City
- Arms-length transaction: removing sales between family members, foreclosure sales, estate sales, corporate sales, government sales, etc.
- 67,704 Paired sales during 2000 Q1-2016 Q2
- Removed ones with reported major renovations between paired sales

Data Summary

Variable	\mathbf{N}	25th Pctl	50th Pctl	75th Pctl	Mean	Std Dev
Holding period	67,704	2.00	4.00	7.00	5.00	3.37
Age at purchase	67,704	48.00	75.00	86.00	65.25	30.92
Age at sale	67,704	53.00	79.00	92.00	70.24	30.77
Purchase Price(\$) Sale Price(\$)	67,704	269,000	370,000	509,000	438,151	504393

Age-related depreciation

- Price Change = Inflation + Net of Maintenance Depreciation

$$
r_{\text {price change }}=r_{i}-\left(r_{\text {dep }}-r_{\text {maint }}\right)
$$

- Collinearity - nonlinear depreciation function
- Model A: $\log \tau$ (Lee, Ching and Kim 2005; Harding, Rosenthal and Sirmans 2007)

$$
\log \frac{P_{t+\tau, i}}{P_{t, i}}=\sum_{t=1}^{\tau_{i}} \gamma_{t} D_{t, i}+\alpha \log \tau_{i}+\varepsilon_{t, i}
$$

Price Depreciation
inflation

- α is the elasticity of housing price depreciation with respect to the change in age between sale dates

Price Inflation

Depreciation Curve

Model B: Depreciation with Age Groups

- Depreciation - continuously
- Maintenance - cyclical
- $\log \frac{P_{t+\tau, i}}{P_{t, i}}=\sum_{t=1}^{\tau_{i}} \gamma_{t} D_{t, i}+\alpha_{j}\left(D_{a g p_{j}} * \log \tau_{j, i}\right)+\varepsilon_{t, i}$
- Different Age Groups

$$
\begin{array}{ll}
\checkmark & 0-10,11-20, \ldots, 110+ \\
\checkmark & 0-10,11-20, \ldots, 111-120,121-150,150+ \\
\checkmark & 0-5,6-12,13-20,21-30, \ldots, 110+ \\
\checkmark & \ldots
\end{array}
$$

- $D_{a g p_{j}}=1$ if part of years $t+\tau$ belongs to this age group, otherwise $D_{a g p_{j}}=0$

An Example

- $\log \frac{P_{t+\tau, i}}{P_{t, i}}=\sum_{t=1}^{\tau_{i}} \gamma_{t} D_{t, i}+\alpha_{j}\left(D_{a g p_{j}} * \log \tau_{j, i}\right)+\varepsilon_{t, i}$
- A house built in 1980 was sold in 2003 and in 2014.
\checkmark age=23 for the $1^{\text {st }}$ sale, and age=34 for the $2^{\text {nd }}$ sale
\checkmark depreciation for 11 years belongs to two age groups
\checkmark Depreciation function: $\alpha_{2} \log 7+\alpha_{3} \log 4$

Housing Price Depreciation in Log-log Regression Models
 Model A
 Model B

Variable	Parameter		Parameter					
	Estimate	t-ratio	Pr>\|t		Estimate	t-ratio	Pr>\|t	
t(1-max)	-0.1451	-30.8	<. 0001					
t(1-10)				-0.0677	-25.94	<. 0001		
t(11-20)				-0.0438	-16.61	<. 0001		
t(21-30)				-0.0467	-15.07	<. 0001		
т(31-40)				-0.0458	-18.58	<. 0001		
t(41-50)				-0.042	-16.28	<. 0001		
t(51-60)				-0.0354	-13.23	<. 0001		
т(61-70)				-0.03	-12.22	<. 0001		
т(71-80)				-0.0341	-14.78	<. 0001		
t(81-90)				-0.0401	-16.45	<. 0001		
$\tau(91-100)$				-0.0422	-14.67	<. 0001		
$\tau(101-110)$				-0.0355	-10.43	<. 0001		
[(110+)				-0.0017	-0.26	0.7913		

Depreciation Curve with 10-year Group

Two-step Linear Depreciation

- Adjust sales price by inflation using Housing Price Inflation Index from the nonlinear model in the $1^{\text {st }}$ step, then calculate depreciation in the $2^{\text {nd }}$ step
- Model C: $\log \frac{P_{t+\tau, i}}{P_{t, i}}=\alpha \tau_{i}+\varepsilon_{t, i}$
- Model D: $\log \frac{P_{t+\tau, i}}{P_{t, i}}=\alpha_{j}\left(D_{a g p_{j}} * \tau_{j, i}\right)+\varepsilon_{t, i}$

Housing Price Depreciation in Log-linear Regression Models Model C
 Model D

| | Parameter Estimate | t-ratio | Pr>\|t| | Parameter Estimate | t-ratio | $\operatorname{Pr}>\|\mathrm{t}\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\tau(1-\mathrm{max})$ | -0.0178 | -45.97 | <. 0001 | | | |
| $\tau(1-10)$ | | | | -0.0298 | -41.71 | <. 0001 |
| $\tau(11-20)$ | | | | -0.0215 | -36.09 | <. 0001 |
| $\tau(21-30)$ | | | | -0.0222 | -22.18 | <. 0001 |
| $\tau(31-40)$ | | | | -0.0208 | -19.47 | <. 0001 |
| $\tau(41-50)$ | | | | -0.0181 | -23.33 | <. 0001 |
| $\tau(51-60)$ | | | | -0.0148 | -22.86 | <. 0001 |
| $\tau(61-70)$ | | | | -0.0108 | -13.43 | <. 0001 |
| $\tau(71-80)$ | | | | -0.0141 | -20.15 | <. 0001 |
| $\tau(81-90)$ | | | | -0.0163 | -24.89 | <. 0001 |
| $\tau(91-100)$ | | | | -0.0194 | -18.51 | <. 0001 |
| $\tau(101-110)$ | | | | -0.01 | -5.99 | <. 0001 |
| $\tau(110+)$ | | | | -0.0007 | -0.17 | 0.8664 |

Median Depreciation Rate in Sample

- First adjust sales price by inflation, then measures the price changes as they age from the $1^{\text {st }}$ sale to the $2^{\text {nd }}$ sale
- Depreciation rate $=\frac{\text { Sale } 1-\text { Sale } 2}{\text { Holding Period in Years }}$

Age	4	5	6	7	8	9	10
No. of Sales	3,735	3,466	3,128	2,799	2,485	2,204	1,897
Median	1.66%	1.60%	1.53%	1.48%	1.43%	1.36%	1.36%
Mean	1.11%	1.03%	1.05%	1.09%	1.16%	0.70%	0.78%

Depreciation Curves

Summary

- Repeat Sale Model give us a lot of options to model depreciation- use your own judgments
- Results agree with leading providers of building cost data
- We further use this depreciation schedule in our cost approach for single - three family homes in the borough of Brooklyn, model B achieves the best horizontal and vertical equity

